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Heisenberg Hamiltonians, with distance-dependent spin couplings andσ-bond potential, have proved to be
very efficient for the treatment of conjugated hydrocarbons. A similar approach is applied to CtC triple
bonds. The effective spin couplings are extracted from accurate CI calculations on acetylene. Tests show that
the treatment of poly-ynes gives reliable results. The asymptotic trends of the lowest excited states geometry
and energy are discussed.

I. Introduction

The possibility to treat efficiently the properties of the
conjugated hydrocarbons in their ground state or their lowest
excited states through a magnetic Hamiltonian,1 namely, a
geometry-dependent Heisenberg Hamiltonian, has been estab-
lished more than 15 years ago.2 Some extensions of that
approach made possible its use for rather accurate descriptions
of photochemical processes involving cyclizations andσ bond
formations.3 The success of that approach for the treatment of
the most delocalized electronic systems of organic chemistry,
namely, theπ electron clouds, may seem paradoxical because
in solid state physics4 the magnetic approach is considered to
be valid for the strongly correlated regime only, i.e., for systems
where the electronic repulsion prevails on the electronic
delocalization. In reference to the well-known Hubbard Hamil-
tonian5

wheretp,q is the hopping integral between the bonded atomsp
andq andU is the repulsion between two electrons on the same
site; the delocalization/repulsion ratio is measured by thet/U
ratio. The most generally accepted|t/U| ratio for hydrocarbons
is close to 1, out of the|t/U| < 1/4 strongly correlated (i.e.,
magnetic) region. The efficiency of the magnetic approach may
be rationalized by considering that

(i) The neutral VB structures remain the leading components
of the wave functions, and the spin order remains almost the
same whatever|t/U| ratio

(ii) The spin-coupling parameter is of course normalized, it
deviates from its perturbative estimate-2t2/U and takes the
value of half the exact energy difference between the singlet
ground state and the lowest triplet state of the dimer.

Extensions to heteroatomic conjugated molecules have been
proposed,6 when the heteroatoms N or O bring one (or two)π

electron. The present paper extends the same strategy to triple
bonds or more precisely to their twoπ bonds. As will be recalled
in the next section (II), the definition of the Heisenberg
Hamiltonian for systems involving more than one electron per
atom is not unique and faces important difficulties.7 Nevertheless
it is possible to define a Heisenberg Hamiltonian in terms of
Sz ) (1/2 particles from three low-lying states of the acetylene
molecule. The knowledge of the corresponding potential-energy
curves from accurate ab initio calculations defines uniquely a
distance-dependent Heisenberg Hamiltonian.

Section III reports a few calculations from this model
Hamiltonian concerning HCnH linear chains. Some of them,
concerning small molecules, are compared to ab initio calcula-
tions, showing the good transferability of the effective interac-
tions extracted from the two center molecule to larger com-
pounds. The comparison of the calculated and experimental
geometries and spectrum of poly-ynes confirms the reliability
of the here-proposed effective magnetic Hamiltonian.

II. Extraction of a Magnetic Hamiltonian for C tC Triple
Bonds

The magnetic Hamiltonians are effective Hamiltonians spanned
by neutral valence bond (VB) determinants, i.e., determinants
in which the atoms are neutral. The effect of the electronic
delocalization between the atoms, i.e., of the interaction between
the neutral and ionic VB configurations, results in a modification
of the energies of the neutral VB determinants and of the
interaction between them. When each atom brings one electron
in one atomic orbital (AO), as occurs for theπ electrons of a
conjugated hydrocarbon, occupying a 2pz AO, the model space
is uniquely defined. This is no longer the case for systems where
each atom brings two electrons in two orthogonal AO, as occurs
for the carbon atom of a poly-yne which bears twoπ electrons
in two π (2px and 2py) AO.

1. Choice of the Model Space.Considering the simplest
(two-center) problem, with two atoms A and B, one has four
orbitals XA, YA, XB, and YB bearing four electrons. The total
number of neutral VB determinants|i〉 is 10, divided in five
pairs.
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Notice that although the first six determinants have the same
space part with one electron per AO and different spin
distributions the last four have different space parts, with double
occupancy of orbitals. This 10-dimensional space has the nice
property of being invariant under the rotationµ of the system
of axis {x,y} into {x′,y′}. {x′,y′} ) µ{x,y}.

If one chooses this 10-dimensional spaceS of projectorPS

as model space, one faces two difficulties: (i) the effective
Hamiltonian will not be a spin-only Hamiltonian, but because
there is not a unique space part, it will be a magneto-angular
Hamiltonian, which is in principle conceivable8 but far less
convenient than a magnetic Hamiltonian for the treatment of
larger systems and (ii) it will be very difficult to define this
effective Hamiltonian in the most rigorous sense.9 An effective
Hamiltonian is defined from a correspondence between a model
spaceS and an isodimensional target space which is a stable
subspace of the Hamiltonian, i.e., composed of the same number
n (here 10) eigenfunctions of the Hamiltonian:

The effective Hamiltonian satisfies the basic eigenvalue equation

i.e., gives exactn eigenenergies and the components of then
corresponding eigenvectors in the model space. Of course, the
relevant eigenvectors are those which have the largest compo-
nents in the model space.

Now looking at the list of model-space determinants, one sees
immediately that the last two determinants XA

2XB
2 and YA

2YB
2

have such high energy that they are embedded in the continuum.
There is no chance to find unambiguously bound eigenstates
of H which have large projections on these determinants. In
other words, one cannot expect to find a rational target space
and, consequently, an appropriate operatorΩ sending from the
model space to the target space of projectorPS′

Hence, it is practically impossible to define the effective
Hamiltonian10a

An alternative definition of the model space comes from the
solid state physics tradition.1 It consists of considering only the
ground state of the atoms (for transition metal atoms) or here
the triplet state of the local 2e- problem and its three
components

For the two-center problem, theSz ) 0 subspace is of dimension
three, spanned by TA

+TB
-, TA

-TB
+, and TA

0TB
0 It is easy to express

this basis in terms of the previously defined VB determinants
(eqs 1-5):

From these three configurations, it is possible to build a singlet
state1∑g

+, a triplet state3∑u
+, and a quintet state5∑g

+

If the effective Hamiltonian is an Heisenberg Hamiltonian

the energy spacings are-J between the singlet and the triplet
and-2J between the triplet and the quintet.

One may understand that in acetylene ground state the leading
determinants are 1 and 1′ which satisfy the atomic Hund’s rules
and make possible the interatomic electronic delocalization in
both π bonds. In this molecule, the VB determinants 3 and 3′
which bear two electrons of parallel spins in eachπ bond do
not interact with ionic VB states and actually have a very weak
weight in the ground-state function, whereas the coefficients
of the determinants 2 and 2′ are important

The singlet wave function1Ψg (eq 17) is certainly a poor
approximation of the projection of the exact wave function in
the neutral VB model space. Actually, the three-dimensions
model space, i.e., the use ofS) l atomic states, is only relevant
when the intraatomic exchange integral

is much larger than the interatomic delocalization energy 2t2/U
(in absolute value). It is the case for the interaction between

TA
+ ) XAYA (Sz ) 1) (11)

TA
- ) Xh AYh A (Sz ) -1) (12)
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0 )

(XAYh A + Xh AYA)

x2
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TA
+TB
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-TB

+ ) 1′ (15)
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0TB

0 ) 1
2
(3 + 3′ - 2 - 2′) (16)

1Ψg ) 1

x3
(TA

+TB
- + TA

-TB
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0TB
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x2
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+TB
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-TB
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transition metal atoms dn (n e 8) in organometallic complexes
or in ionic solids, but it is not true for poly-ynes. The use of
this reduced model space seems a priori irrelevant for poly-
ynes.

A previous paper7 has discussed the possibility to use the
six-dimensional model space spanned by the determinant with
one electron per AO. This model space suffers from a formal
defect, it is not invariant under rotations between thex andy
axes. As a consistent defect, it only provides one of the
degenerate4 states.

Another difficulty comes from the strong nonorthogonality
of the projections of the six eigenstates of the relevant symmetry
in the model space. The Bloch10a effective Hamiltonian, as
rigorously defined from these eigenstates according to eq 22,
is strongly nonhermitian and is nontransferable because it gives
poor results for spectrum of large CnH2 compounds:

whereS is the overlap matrix between the projections.
The hermiticity of the effective Hamiltonian may be forced

by using the des Cloizeaux definition,10b i.e., by using sym-
metrically orthogonalized projections of the eigenstate in the
model space:

but it involves very large four-body operators (which are quartic
in terms of spin operators) and its transferability to larger poly-
ynes is bad. Finally a reasonable solution, both hermitian and
transferable, has been found7 by orthogonalizing the projection
of the second eigenvector of a given symmetry to the projection
of the lowest one according to a Schmidt procedure, which keeps
the largest information (energy and wave function) concerning
the lowest state of its symmetry and sacrifices the information
concerning the wave function of the second state of that
symmetry.

The present work will use this six-dimensional model space
but according to a different strategy invoking the concept of
intermediate effective Hamiltonian.11

2. Definition of an Intermediate Effective Hamiltonian.
We would like to define a simple Heisenberg Hamiltonian
spanned by the six determinants (1, 1′, 2, 2′, 3, and 3′) and
involving only two-body operators, which has the form

where|xayja〉 stands for axa

+ayja

+ and 〈xayja| for ayjaaxa.
This Hamiltonian involves anRab scalar term, theσ bond

potential, a monocentric ferromagnetic (positive) exchange
integral K, and an interatomic effective exchangeg, which is
antiferromagnetic (negative) and reflects the effect of the
electronic delocalization in theπ bonds.

This Hamiltonian may be written in the basis of the six
determinants for theSz ) 0 space,

and its eigenvectors and eigenvalues are quite easy to obtain.
The quintet and the three triplet states are defined by symmetry

whereas the two singlet states1∑g
+ are solutions of a 2× 2

problem

It is impossible to reproduce the whole spectrum of the six
eigenvalues from three parameters only (R,K,g). One solution
would invoke a least-squares fit. However, it is not clear that
the upper states, the excited1∑g

+ state and34g state, have to be
reproduced as accurately as the lowest ones. In the spirit of the
intermediate Hamiltonians, which are designed to reproduce only
a part of the spectrum, we decided to concentrate on the lowest
two states, i.e., the ground state X˜ 1∑g

+ and 3∑u
+ state, to

determine the parametersK andg and to identify theRparameter
to the energy of the5∑g

+ state. We may summarize the
extraction as follows:

3. Ab initio Potential-Energy Curves of C2H2 and Defini-
tion of an R-Dependent Heisenberg Hamiltonian. The
potential-energy curvesE(rCC) have been calculated for the X˜ 1

∑g
+, 3∑u

+, 34u, and5∑g
+ of the acetylene molecule using a DZP

basis set plus diffuse s and p orbitals. The calculation of the
energies was performed according to a multireference second-
order perturbation theory.12 The multireference space involved
all determinants where coefficients are larger than 0.02. The
diagonalization of these selected variational subspaces provides
zero-order functions which are perturbed to the second order
in energy according to be CIPSI algorithm, adopting a Mo¨ller-
Plesset13 barycentric definition of the unpertubed Hamiltonian.
The calculation was performed for six values of therCC distance
between 2.1 and 3.1 bohr, keeping the linear geometry and a
fixed CH bond length.14

The potential-energy curves appear in Figure 1. The ground
state equilibium geometry is 1.2297 Å to compare to the 1.2033
Å experimental value.14 The vertical spectrum is in good
agreement with the experiment15,16 because

HBloch
eff ) ∑

m)1,n

|PSΨm〉EmS-1〈PSΨm| (22)

|Ψ′m〉 ) S-1/2|PSΨm〉 (23)

HdC
eff ) ∑

m)1,n

|Ψ′m〉Em〈Ψ′m| (24)

H ) Rab + K[|xayja - xjaya〉〈xayja - xjaya| + |xbyjb - xjbyb〉
〈xbyjb - xjbyb|] + g[|xaxjb - xjaxb〉〈xaxjb - xjaxb| +

|yayjb - yjayb〉〈yayjb - yjayb|] (25)

1 1′ 2 2′ 3 3′
1 R + 2g 0 -g -g 0 0
1′ R + 2g -g -g 0 0
2 R + 2g + 2K 0 -K -K
2′ R + 2g + 2K -K -K
3 R + 2K 0
3′ R + 2K

5Σg
+ ) (1 + 1′ + 2 + 2′ + 3 + 3′)/x6, E(5Σg

+) ) R (26)

34g ) (3 - 3′)/x2, E(34g) ) R + 2K (27)

34u ) (2 - 2′)/x2, E(34u,) ) R + 2g + 2K (28)

3Σu
+ ) (1 - 1′)/x2, E(3Σu

+) ) R + 2g (29)

E(1Σg
+) ) 2(K + g) ( 2x(K + g)2 - 3kg (30)

R ) E(5Σg
+), 2g ) E(3Σu

+) - E(5Σg
+),
K is extracted from eq 30

∆E ) (Xh 1Σg
+ - 3Σu

+) ) 5.30 eV (experiment15,165.23 eV)

∆E(X̃1Σg
+ - 34u) ) 6.33 eV (experimentl5,16 6.2 eV)
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The vertical transition energy to the5∑g
+ state, which is

repulsive, is 11.45 eV. Table 1 reproduces the values obtained
for the three parametersR, g, and K at five interatomic CC
distances. Of course,R is an essentially repulsive curve in that
domain of distance, although it presents a minimum forr = 3
bohr, typical ofσCC single bond. The antiferromagnetic exchange
g, which reflects the electronic delocalization in theπ bonds,
is negative, and its magnitude rapidly decreases when the CC
bond increases, as expected. The direct exchange positive
integral K is essentially monocentric and varies more slowly
with the interatomic CC distance. It increases by 30% between
1.20 and 1.60 Å but only by 8% between 1.20 and 1.40 Å,
which covers the relevant domain of distances for C(sp)-C(sp).
However, it is difficult to take into account this distance
dependence because in poly-ynes the internal carbon atoms are
involved in two CC bonds and in the further calculations the
value ofK has been kept constant and equal to 1.083 eV.

A polynomial interpolation (in a.u.) has been performed for
g andR

The corresponding curves appear in Figures 2 and 3.
As a control of the quality of the so-extracted Heisenberg

Hamiltonian, we have checked the equilibrium distances and
vertical transition energies for the prototype C2H2 molecule. The
neglect of the dependence of theK integral on therCC distances
introduces some error on the X˜ 1∑g

+ and 3∑u
+ potential curves,

the ab initio equilibrium distance is now 1.200 Å for the1∑g
+

state, (experiment 1.203 Å, ab initio 1.227 Å), 1.354 Å for the
3∑u

+ (ab initio 1.368 Å), and 1.354 for the34u (ab initio 1.352
Å). The vertical transition energies to the3∑u

+ and 5∑g
+ states

are identical to the ab initio ones, becauseK is the exact one
for this distance.

The impossibility for the Heisenberg spectrum to reproduce
the spectrum of the six states appears from an important error
in the Xh 1∑g

+ f 34g vertical transition (7.47 eV instead of 6.2
eV in the experiment, 6.33 eV in the ab initio calculation) and
in the X̃1∑g

+ f 34g transition (14.94 eV instead of 12.98 eV in
the ab initio calculation). The transition energy of the X˜ 1∑g

+ f
34g is 13.62 eV at the ab initio level and 12.98 eV in the
magnetic calculations.

III. Test Applications

1. Even Poly-ynes.The efficiency of the magnetic Hamil-
tonian may be studied on poly-ynes with an even number of
atoms C4H2, C6H2, and C8H2. These molecules are linear
and exhibit a strong bond alternation, their ground state is of
X̃1∑g

+ symmetry. The results of the geometry optimization
appear in Table 2. The calculated bond lengths of C4H2 (1.211
and 1.380 Å) are in good agreement with the experimental
values17 (1.2176 and 1.3831 Å). The lengths of the external
bonds are almost the same for larger poly-ynes, and the internal
bonds in C8H2 present a slight tendency to a decrease of bond
alternations (triple bond 1.227 Å and single bond 1.368 Å) as
occurs to a larger extent for polyenes.

The geometries of the3∑u
+ state have also been calculated,

and it presents a strong tendency to equalization of the central
bond lengths around a value of 1.30 Å, which can be seen as
the mean CC distance in poly-ynes, halfway between the triple
and the single bonds lengths. The results of Table 2 concerning
the 3∑u

+ geometry can easily be rationalized if one considers
this state as the resonance between a3(n f n*) excitation in
the πx system with the same excitation in theπy system.

Figure 1. Potential-energy curves of the acetylene molecule: from
the bottom X̃1∑g

+ ground state and3∑u
+, 34u, and5∑g

+ lowest excited
states.

TABLE 1: r-Dependence of the g(r), K(r), and R(r)
Functions

r (a.u.) 2.2747 2.5582 2.6527 2.7472 3.0308
g (a.u.) -0.113 031 -0.081 551 -0.072 982 -0.065 213 -0.045 964
K (a.u.) 0.039 78 0.040 276 0.040 895 0.042 328 0.051 950
R (a.u.) -0.708 729 -0.809 117 -0.825 324 -0.835 584 -0.842 036

R(r) ) -0.270 962r3 + 2.488 090r2 - 7.602 320r -
69.112 000

g(r) ) 0.011 396r3 - 0.135 171r2 + 0.563 600r -
0.829 733

Figure 2. r-dependence of theσ-bond potentialR.

Figure 3. Bond length dependence of the interatomic effective
exchangeg.

3368 J. Phys. Chem. A, Vol. 105, No. 13, 2001 Ghailane et al.



Knowing the bond lengths deviations from their mean value
(1.40 Å) for polyenes in their ground singlet and lowest triplet
states and adding these deviations to the mean CC distance in
poly-ynes (1.30 Å), one practically obtains the results of Table
2. Let us consider for instance the butadiyne C4H2 and the
polyene parent butadiene C4H6. The deviation of CC bond length
from the mean CC distances in polyenes (1.40 Å) are respec-
tively -0.05 and+0.05 Å for the external and internal bond in
the singlet state and-0.05 and+0.05 Å for the same bonds in
the triplet state.2 The sum of these deviations is zero, and
actually, the triplet state bond length of butadiyne are very close
to the mean CC distances in poly-ynes (1.30 Å). As a
consequence of that rationalization, one may predict that because
the triplet state in conjugated polyenes tends to be a solitonic
pair separated by a reversed bond alternation2 in the central half
part of the chain, the3∑u

+ geometry of poly-ynes should

present a strong bond alternation on the two sides and a long
central region without bond alternation. This agrees with the
calculated geometry for the3∑u

+ state of octatetrayne (C8H2).

The transition energy for the lowest1∑g
+ f 3∑u

+ transitions
are reported in Table 3. One may see first that for C4H2 the
Heisenberg Hamiltonian provides a vertical transition energy
of 3.79 eV, in perfect agreement with the ab initio value obtained
according to the CIPSI algorithm (3.84 eV). This result confirms
the relevance of our magnetic Hamiltonian. In view of the above
remarks on the nature of the excited state, one may expect a
decrease of the transition energy with the numberN of atoms,
which, as occurs for polyenes, should roughly follow anN-1

dependence. Extrapolation suggest a 1.1-1.2 eV asymptotic
vertical transition. This value is larger than for polyenes, as
expected because the mean bond lengths are smaller (larger
hopping integrals).

The emission transition energies are significantly smaller, and
the asymptotic value should be around 0.6 eV. For the polyene
chain, the asymptote is zero because for the relaxed triplet

geometry the two unpaired electrons are localized far away and
do not interact, generating a singlet-triplet degeneracy. This
is no longer the case for poly-ynes because the compromise in
the geometric structure maintains a delocalization and interaction
of the unpaired electrons in theπ system they occupy,
prohibiting the singlet-triplet degeneracy.

2. Odd Poly-ynes.On the odd poly-ynes C2n+1H2, the twoπ
systems bear an unpaired electron. The twoπ systems both have
a doublet ground state, which prefer a localization of the
unpaired electron on the central atoms. For an odd polyene,
the bond alternation is strong in the external bonds and vanishes
in the center of the system.2 Because the trends of the two
orthogonal π systems are compatible, one may expect an
equilibrium geometry with a marked bond alternation on the
external parts, vanishing in the central region.

The low-lying states will be of3∑g
- and 14g character.

Notice that our Heisenberg Hamiltonian can only produce one
of the 14 components (thexy one, thex2 - y2 components
cannot be reached from our reduced model space). Because the
two unpaired electrons are ferromagnetically coupled through
the intraatomic integralsK and because they remain in the center
of the system, one may expect that

(i) The energy ordering will be3∑g
- < 14g.

(ii) The energy difference should not vanish when the size
of the chain increases.

(iii) The equilibrium geometries of both states should be a
lot smaller.

The results appear in Tables 4 and 5 for C3H2, C5H2, and
C7H2, and they perfectly confirm the above statements regarding
the geometry (bond length equalization), the near identity of
the equilibrium geometry of both states. The triplet to singlet
lowest transition energy is almost size independent, and of
course, the vertical and adiabatic absorption energies coincide
(and coincide with the emission energy).

IV. Conclusion

Heisenberg Hamiltonians are now widely used for the study
of the covalent states of conjugated molecules and their
photochemistry, despite the large effective|t/U| ratio of theπ
systems. The present work presents an extension to the CC triple
bonds. The major difficulty is not the expected larger|t/U| ratio
for the very short triple bonds. The main problem is logical; it

TABLE 2: Optimized Bond Distances (in Å) in Even
Poly-ynes in the Two Lowest States, Starting from the
External Bonda

r1 r2 r3 r4

C2H2 1∑g
+ 1.200 (1.203)

3∑u
+ 1.354

C4H2 1∑g
+ 1.211 (1.2176) 1.380 (1.3831)

3∑u
+ 1.298 1.300

C6H2 1∑g
+ 1.213 1.375 1.224

3∑u
+ 1.265 1.310 1.313

C8H2 1∑g
+ 1.214 1.373 1.227 1.368

3∑u
+ 1.248 1.325 1.301 1.295

a Experimental values in parentheses.

TABLE 3: Lowest Singlet-Triplet Transition Energy in
Even Poly-ynes (in eV)

C2H2 C4H2 C6H2 C8H2

vertical absorption 5.24 3.79 (3.84) 3.00 2.53
emission 3.67 2.53 1.90 1.50

TABLE 4: Optimized Bond Distances (in Å) in Odd
Poly-ynes in the Two Lowest States, Starting from the
External Bonda

r l r2 r3

C3H2 3∑g
- 1.278

14g 1.277
C5H2 3∑g

- 1.246 1.321
14g 1.243 1.324

C7H2 3∑g
- 1.233 1.340 1.287

14g 1.233 1.341 1.286

a Experimental values in parentheses.

TABLE 5: Vertical Absorption and Emission Lowest
Transition Energies (in eV) of Odd Linear Poly-ynes

C3H2 C5H2 C7H2

vertical absorption 2.23 2.30 2.37
emission 2.23 2.30 2.37

Heisenberg Hamiltonian for Poly-ynes J. Phys. Chem. A, Vol. 105, No. 13, 20013369



concerns the choice of the model space. If one rejects the largest
model space, spanned by all of the neutral VB determinants,
which would not lead to an Heisenberg Hamiltonian, one may
in principle express the magnetic Hamiltonian in terms ofSz )
1/2, spanned by electrons in atomicπ orbitals, orS ) 1 spins,
spanned by atomic triplet states. The latter solution is of course
the relevant one for transition metal atoms (e.g., Ni in d8

configuration), but it seems questionable for the conjugated
hydrocarbons where the intraatomic ferromagnetic exchange
integralK is not larger than the interatomic antiferromagnetic
couplingJ(-2t2/U). The present work has followed the other
strategy, leaving the use of the Bloch’s Hamiltonians and
extracting the relevantJ, K, and R parameters as functions
of the interatomic CC distance from the energies of three states
1∑g

+, 3∑u
+, and5∑g

+ of the dimer.
The extraction uses the potential-energy curves of the

acetylene molecule, calculated via accurate variation-perturba-
tion CI methods, which are in good agreement with the available
experimental information. The results concerning larger CnH2

poly-ynes, fromn ) 3-8, are satisfactory, confirmed by a few
additional ab initio CI calculations and exhibiting very consistent
trends regarding both the equilibrium structures and the lowest
transition energies.

Of course, the here-produced Heisenberg Hamiltonians is not
limited to the study of poly-ynes, it may be used for triple-
bonds containing conjugated hydrocarbons.

Although it might be useful to calculate a HC-CH2 system
to define properly the interactions between sp and sp2 carbons,
it would be possible as well to fit theR andJ values for this
interaction as the mean functions for the now available sp2-sp2

and sp-sp interactions. Allenic systems might be treated
accordingly. A further work will explore these possibilities.
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